Harley-Davidson Museum

Milwaukee, WI

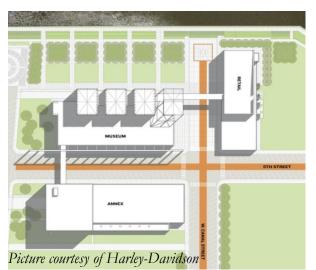
10/19/2011

Jonathan R. Rumbaugh Mechanical Option


Advisor: Dr. William Bahnfleth

[TECHNICAL REPORT TWO]

Table of Contents


EXECUTIVE SUMMARY
PROJECT BACKGROUND
Mechanical Summary
LOAD CALCULATION
Design Conditions
Model Design
Load Assumptions
Occupancy Assumptions
Ventilation Assumptions
Lighting and Equipment Electrical Load Assumptions6
Construction7
Schedules7
Calculated Load vs. Design Load Analysis7-8
ENERGY CALCULATION AND OPERATING COST
Energy Consumption
Energy Comparison
Cost Analysis
EMISSIONS
REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

EXECUTIVE SUMMARY

This thesis technical report was conducted on the Harley-Davidson Museum in Milwaukee, Wisconsin. Separated into three distinct parts, the complex consist of a 60,000 SF Museum which houses the permanent exhibits; a Building which 45,000 SF Annex will accommodate temporary exhibits and Harley Davidson's extensive archives; and a 25,000 SF building which houses a 150-seat restaurant, a grab and go cafe, a retail space, and a special event space. The museum has an exposed structure inside and outside, but many of the areas did not permit ductwork to be visible which created a challenge for the engineers at HGA.

The purpose of this report is to evaluate the HVAC loads, energy consumption, utility cost, and emissions of the Harley-Davidson Museum. An in-depth analysis in these four areas is a helpful forecast as to how the building will perform once built. It can also be used by building designers to compare design alternatives to create a more efficient, affective, healthy, and comfortable building. In this case, the analysis was done to survey the existing conditions of the newly built building as it stands today. This information will be used to point out weaknesses in the building and areas for improvement, which will be studied further in later reports.

A comprehensive load and energy model was conducted using the computer simulation program Trane TRACE 700. The calculated HVAC loads were then compared to the construction documents and design information provided by HGA. Energy consumption and operating costs were compared to actual monthly energy data and utility bills provided by Harley-Davidson. The model calculated a peak cooling load of 200 ft² per ton and a peak heating load of 13 ft² per MBh, which is only 2% and -12% different from the actual design respectively. The calculated total kBTU per year is 15,293,176 kBTU and has a CO₂ global warming potential equivalent annual emission rate of over 9 million pounds. The monthly kWh also matches sensibly to the actual data. The Harley-Davidson Museum is estimated to have a utility cost of $2.14/ft^2$. Through the comparisons it was concluded that the TRACE model is a reasonably accurate estimate and will be a vital tool in analyzing new alternative designs in future investigations.

PROJECT BACKGROUND

HGA worked with Pentagram Architecture to transform an underutilized site with environmental and geotechnical challenges in to an award winning Museum for Harley-Davidson that attracts 350,000 visitors annually. The museum serves as a catalyst for redevelopment of the old historical warehouse neighborhood. Suitably located in Milwaukee, a city built around manufacturing, the design of the museum was inspired by factories. The style of architecture is industrial, yet refined, particularly appropriate to which it reflects the character of Harley-Davidson. An honest architectural palette of steel, brick, and glass creates a straightforward understanding of the building's form and reveals the reality behind its unique aesthetic.

Careful consideration went in to the design to properly reflect the industrial character of Harley-Davidson. The layout of the museum was designed to follow a chronological path. The use of motorcycles, posters, film clips, and interactive displays form a narrative of the history of Harley-Davison from its founding to the present. Encompassing a 20 acre site, this project creates an additional amenity on the riverfront for the public by creating five acres of terrace and park space on the 20 acre site.

The Harley-Davidson Museum's façade is comprised of brick metal and glass. Ebony black matte Field Brick covers the majority of the façade on all three buildings in the museum complex. Larger areas not covered by brick utilize a pre-fabricated, field assembled, curtain wall. The curtain wall is a high-rise aluminum thermally broken curtain wall framing system with windows and entrance framing systems designed to accept 1 inch of glazing material. Harley-Davidson's colors of gray, orange, and black, were applied in the design and application of the curtain wall system. Extruded bars give the curtain wall texture. Exterior aluminum decorative louvers are used to conceal rooftop mechanical systems.

All three buildings making up the Harley-Davidson Museum have a roofing system comprised of fully adhered thermoplastic single ply membrane over tapered insulation and vapor retarder on metal decking. The roof deck is 3" 20 gage galvanized steel.

Careful consideration went in to making the Harley-Davidson Museum sustainable without compromising the architectural integrity. A study was conducted on solar angles to minimize the amount of solar radiation entering the museum. Automatic louvers open and close according to the amount of sun entering the building. Extended overhangs over the windows block the sun during the hottest times of the day and year. It was important for the architects to preserve as much of the site as possible. Two water towers from the existing site were preserved and serve as architectural focal points instead of filling up a landfill. Local vegetation was planted to minimize excess watering. The river walk was preserved creating a sense of community next to the river. The river walk also serves as an alternate carbon free way to travel to and from the museum.

MECHANICAL SUMMARY

The Museum Building has two central 42,000 CFM variable air volume air handling units with two central return air points. The Retail Building has five constant volume air handling units serving the five separate zones: retail, kitchen, café, restaurant, and special event space. The Annex Building has 4 air handling units. The exhibit space is served by a custom built 21,500 CFM constant air volume air handling unit. The workshop, exhibit prep and storage are served by the 1 modular 8,000 CFM constant air volume air handling unit. General offices are served by 1 modular 5,000 CFM variable air volume air handling unit. The loading dock, security, employee bream room and remaining areas of the annex are served by 1 modular 5,000 CFM variable air volume air handling unit.

The heating water system consists of four 1500MBH sealed combustion condensing boilers with gas fired burners. The heating water system distribution is a variable-primary pumping system. Primary pumps are 386 GPM, 25 HP, variable speed, end suction base mounted type. One pump is used for stand-by. Variable speed pumps have dedicated variable speed drive controllers. This heating system provides hot water heat to air handling unit hot water coils, variable air volume box reheat coils, hot water finned tube radiation, unit heaters and similar devices throughout the building.

The cooling plant consists of 2 roof mounted 300 ton air cooled rotary screw chillers and utilize R134A refrigerant. The chillers have variable speed drive control. A variable-primary pumping system with 747 GPM, 75 HP, and variable speed end suction base mounted type is utilized. The chilled water system uses a 35 percent glycol solution for freeze protection.

Hydronic piping distribution systems throughout the building are schedule 40 steel pipe through 10 inches and standard weight for pipe sizes 12 inches and larger. Welded joints for 3 inch and larger pipe sizes and threaded joints for 2-1/2 inch and smaller pipe sizes were preferred. Hard drawn copper pipe was acceptable for pipe sizes 1 inch and smaller.

Some energy efficiency features in the mechanical design include; operating pumps using variable speed drive controllers, multiple boilers operating at part load capacity, multiple chillers with variable speed capacity adjustment, use of outdoor air for making chilled water during winter, operating air handling units using variable speed drive controllers, use of air flow measuring stations in outdoor air intake, and use of outdoor air for cooling during cooler days.

LOAD CALCULATION

The building load and energy simulation program Trane Air Conditioning Economics 700 (TRACE) was used to evaluate the heating loads, cooling loads and energy consumption of the Harley-Davidson Museum. TRACE was used as an analysis tool for its application of techniques recommended by the American Society of Heating, Refrigerating and Air-Condition Engineers (ASHRAE) and user experience with the program.

Design Conditions:

The Harley-Davidson Museum is classified as nonresidential conditioned space located in Milwaukee, WI, corresponding to the cold-humid 6a climate zone determined by Figure/Table B-1 located in ASHRAE 90.1.2007. Weather data was selected in TRACE to correspond with ASHRAE weather conditions for Milwaukee. TRACE weather inputs are shown in Appendix A. The Engineers at HGA specifide one thermostat condition listed in Table 1.

Table 1 - Thermostat				
Typical Thermostat Param	neter			
Cooling Dry Bulb (°F)	75			
Heating Dry Bulb (°F)	72			
Relative Humidity %	50			
Cooling Drift point	85			
Heating Driftpoint	55			

Model Design:

Zones were separated on a room by room basis because of the contrasting separation of room characteristics. Each room was then classified using the assumptions below and the design documents provided by HGA. Large rooms were broken down into smaller rooms by separating exterior spaces from interior spaces. Rooms that are served by more than one system, for example the temporary exhibit space, was also separated into smaller rooms. Rooms were then assigned to a system which were designed in accordance to the construction documents and assigned to the modeled heating and cooling plants. The plants were also modeled from the information in the construction documents and are described above in the mechanical summary.

Load Assumptions:

The information used to develop the TRACE model of the Harley-Davidson Museum was taken from the construction documents, specifications, and relevant design calculations supplied by the engineers at HGA. When information was not found in the above information ASHRAE standards of design were used.

Occupancy Assumptions:

The number of occupants per space for the Harley-Davidson Museum was taken from occupancy calculations provided by the architects at HGA. When consulting with ASHRAE 62.1.2007 Table 6-1, the designed occupant density (Sq Ft/ person) is considerably lower than the standard. Table 2 compares the designed occupant density for the most common space in the building with the ASHRAE standard. The higher occupancy density will create a higher refrigeration density and latent load, discussed more in the calculated load vs. designed load section of this report.

Table 2 – Most Common Occupant Density						
Modeled Occupant Density						
Sq Ft/person						
Space	Design ASHRAE					
Museums	19 25					

Ventilation Assumptions:

The engineers at HGA designed the Harley-Davidson Museum to have a ventilation rate of 7.5 CFM/ person. This ventilation rate was used in the model for all typical occupied spaces except for the Kitchen which was modeled with 100% outside air. Infiltration was assumed to be 0.3 air changes/hr. which corresponds to a neutral tight construction in TRACE.

Lighting and Equipment Electrical Load Assumptions:

A lighting fixture schedule was available for this analysis; however, many of the exhibits have lighting not listed in the schedule. Lighting load information for the model was taken from calculations provided by the engineers at HGA for cooling load. Table 3 shows typical lighting densities compared to lighting densities in table 9.6.1 of ASHRAE standard 90.1.2007. All lighting densities used in the model are higher than the standards set forth by ASHRAE. This will result in higher energy usage and higher cooling load compared to standards.

Equipment and electrical loads were also taken from data supplied by the engineers at HGA. These loads were considered to be miscellaneous loads in the model and were entered in space by space. Many of the exhibits add a considerable load to the space and were also listed space by space as miscellaneous loads. Typical Miscellaneous loads are listed below, however each of the 142 spaces varied from the information in Table 4.

Table 3- Lighting Densities							
Ligh	Lighting Densities						
Space Design ASHRAE							
W/sqft W/sqft							
Exhibit	4	1					
Rent Space	1.5	1.1					
Retail	2.2	1.7					
Offices	Offices 1.5 1.1						
Shop	2.5	1.9					
Storage	1	0.8					

Table 4 - Misc. Loads

Example Misc. Power Densities						
W/ sq ft Mbh						
Security	5	-				
Office	1.5	-				
Rent Space	1.5	-				
Exhibits	30.7	0-40.8				
Kitchen	5	-				
Electrical	-	49.8				

Construction:

The Harley-Davidson Museum is designed with four major wall types and one roof type. Details of the construction types used in the TRACE model are in Appendix B and summarized in Table 5. Information used in the construction templates were taken from construction documents and specifications provided by the architects and engineers at HGA.

Construction Freat transfer values
Table 5 – Construction Heat transfer Values

Construction Summary					
U-factor Shading Coeff					
Wall 1	0.092207	-			
Wall 2	0.086685	-			
Wall 3	0.088577	-			
Wall 4,7,8	0.096145				
Fenestration	-	0.57			
Roof	0.044658	-			

Schedules:

There are 22 different schedules used in the TRACE model: seven for lighting, eight for miscellaneous loads, and seven for people. Cooling schedules assumed 100% utilization for lights, people, and misc. loads and heating schedules assumed 0% utilization. This was done to reflect worse case scenarios. All other schedules provide reasonable assumptions to the operation and utilization of lighting, misc. power, and occupant loads, which will properly reflect actual energy consumption. Schedules were designed to reflect actual operation and utilization of each space in the building. Detailed schedules are in Appendix C.

Calculated Load vs. Design Load Analysis:

The engineers at HGA did not conduct a full energy model for the Harley-Davidson Museum. Calculated heating and cooling loads were compared with information from the construction document schedules and ASHRAE standards. The ASHRAE 2005 Pocket guide cooling load check figures table, shown in Table 6, was compared with the calculated load from TRACE.

 Table 6 – ASHRAE 2005 Pocket Guide Cooling Load Check Figures for Museums

0.00	Occ, Sg Ft/Person			Lights, Watts/Sq Ft		Pofrigo	visition Sal	tt/Ton	Su	pply Air Ra	ite
000, 3	sy ri/reison		Intern		Refrigeration Sq Ft/ Ton		iternal, CF	М			
Lo	Av	Hi	Lo	Av	Hi	Lo	Av	Hi	Lo	Av	Hi
80	60	40	1	1.5	3	340	280	200	0.9	1	1.1

The Harley-Davidson Museum gallery spaces were designed with 19 sq ft / person. This density is higher than the density found in the ASHRAE pocket guide and also higher than the density found in ASHRAE standard 62.1.2007 (discussed above in occupancy assumptions). Light density is also considerably higher than the density found in the ASHRAE pocket guide. This is most likely do to the uniqueness of exhibits and spaces compared to an ordinary museum. With this extra load on the space it would be expected that the refrigeration density would also be high, which it is. The TRACE calculations for refrigeration density and total tons also match the designed values and are illustrated in Table 7 for comparison. The modeled peak heating plant load also falls in a reasonable range to the designed MBh and is illustrated in Table 8.

Table 7 – Cooling Load Comparison

Peak Cooling Plant Loads					
Design	TRACE MODEL Design to Model				
ton	ton	%Δ			
600	585.3	-2%			
sq ft/ ton	sq ft/ ton	-			
196.7783	201.7204852	3%			

Table 8 - Heating Load Comparison

Peak Heating Plant Loads				
Desgin	TRACE MODEL Design to Mode			
MBh	MBh	%∆		
8000	9073	13%		
sq ft/ MBh	sq ft/ MBh	-		
14.75838	13.01300562	-12%		

A comparison of calculated CFM to actual designed CFM is illustrated in Table 9. Most of the AHU's fall in a reasonable rage to the actual AHU's; however, AHU-A4 has a supply air rate well below designed. This is most likely because the AHU was designed to maintain a constant environment for the paper archives of Harley-Davidson; however, it was modeled in TRACE as 7.5 CFM / person with minimum humidity of 30% and no occupants. It can also be viewed in Table 10 that AHU-A4 has an extremely high square foot per ton. To properly model this space a new schedule should be made to maintain a designed relative humidity specified by HGA of 50% and a supply air rate appropriate for an archive of this type instead of 7.5 CFM/ person.

Table	9-	CFM	Comparison	

System Summary						
	Designed	Design to Model				
	CFM	CFM	%Δ			
AHU-A1	9500	7642	-20%			
AHU-A2	25200	25005	-1%			
AHU-A3	16500	17862	8%			
AHU-A4	3000	365	-88%			
AHU-M1	45000	39887	-11%			
AHU-M2	45000	45886	2%			
AHU-R1	10400	7635	-27 <mark>%</mark>			
AHU-R2	3200	4144	30%			
AHU-R3	15000	15087	1%			
AHU-R4	11000	8073	-27 <mark>%</mark>			
AHU-R5	14200	14095	-1%			

Table 10- TRACE Systems

TRAC	TRACE System Summary									
	Sq Ft/ton									
AHU-A1	335.52	98.35								
AHU-A2	290	104.37								
AHU-A3	314.07	425.89								
AHU-A4	523.58	2582.75								
AHU-M1	297.31	171.7								
AHU-M2	323.52	147.71								
AHU-R1	359.82	179.09								
AHU-R2	504.44	236.18								
AHU-R3	309.18	38.2								
AHU-R4	333.36	165.17								
AHU-R5	277.56	121.3								

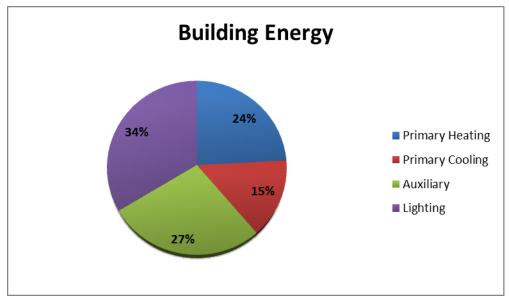
There are several reasons why the calculated data is different from the designed data and ASHRAE standards. The designed model used four standard wall constructions. In reality not every wall was constructed in accordance to one of the four walls. Similarity assumptions were made to save time. Vertical fenestration values differed minimally throughout the building; however, most fenestration was assumed to be equal.

Operating schedules were used in the model to reduce loads and energy used in the building. The designers from HGA may not have utilized schedules in their design calculations.

Weather data used in TRACE is extracted from ASHRAE Climatic Data saved within TRACE. The designers at HGA may have used different weather design conditions than the data used in this report.

For the most part the TRACE model was in accordance to the designed systems by HGA with a few exceptions and is a reasonable tool to illustrate the Harley-Davidson Museum. Energy consumption, cost, and emissions are discussed in the next section of this report.

ENERGY CALCULATION AND OPERATING COSTS


Trane TRACE 700 was also used to model a full year energy simulation of the Harley-Davidson Museum. TRACE calculations were then compared to actual energy usage data and utility bills supplied by Harley-Davidson.

Energy Consumption:

Table 11 below is a breakdown of energy consumption calculated from the TRACE energy model. Figure 1 and 2 illustrates the data in Table 11 and shows that lighting is the major contributor to energy usage in the building. It is also noteworthy that primary heating uses 24% of the building's energy, but only 10% of total source energy and primary cooling uses 15% of the building's energy and 17% of total source energy. This is because most of the Primary heating uses onsite combustion as opposed to the primary cooling which uses electricity from WE Energies. Auxiliary energy which is fans and pumps, is the second leading contributor to energy consumption.

Energy Consumption Summary									
			Total Building	Total Source					
	Elec Cons.	Gas Cons.	Energy	Energy					
	kWh	kBtu	kBtu/yr	kBtu/yr					
Primary Heating	16,095	3,642,586	3,697,518	3,999,115					
Primary Cooling	653,708		2,231,106	6,693,987					
Auxiliary	1,234,713		4,214,076	12,643,493					
Lighting	1,509,076		5,150,476	15,452,973					
Total	3,413,592	3,642,586	15,293,176	38,789,568					

Table 11- Energy Consumption

Figure 1 – Building Energy Breakdown

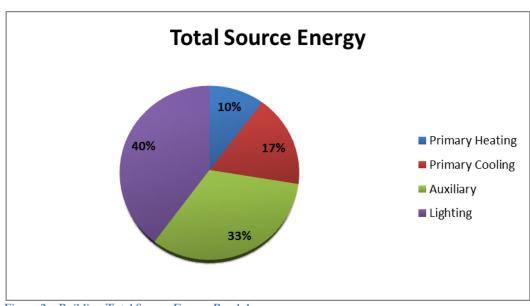


Figure 2 – Building Total Source Energy Breakdown

Figure 3 below illustrates the monthly cooling and heating profiles. From this graph, it is clear that heating dominates in the colder months and cooling dominates in the hot months just as one would expect. The load profile for heating and cooling is not flat, meaning that equipment will not be running near peak performance for the majority of the year.

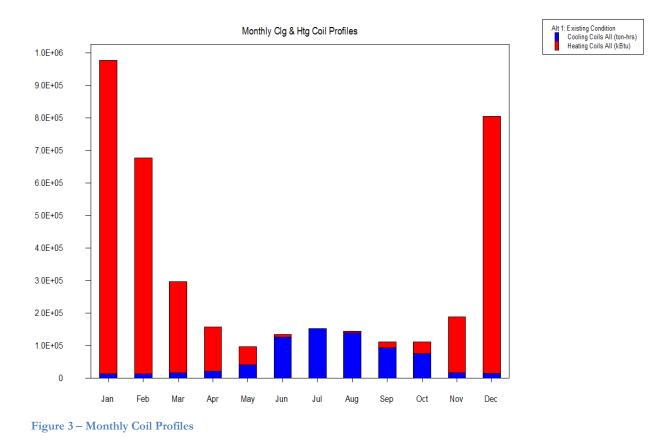


Figure 4 below illustrates the breakdown of HVAC energy consumed in the building. In this graph it is shown that most of the energy consumed by the HVAC equipment is in the coldest months of the year.

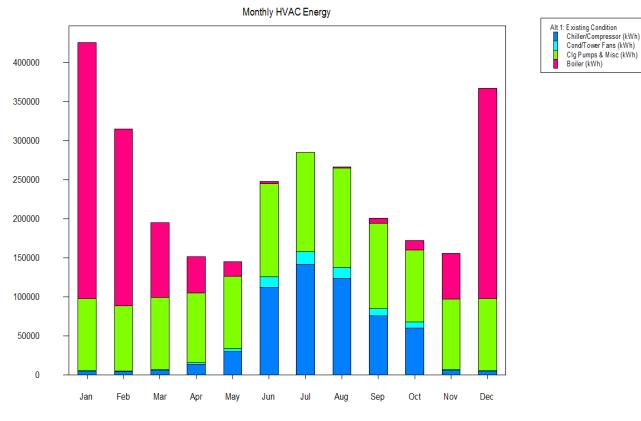


Figure 4- Monthly HVAC Energy Breakdown

Energy Comparison:

Figure 5 illustrates the monthly electricity usage calculated in the model and average monthly temperatures used in the calculations. Most of the electricity is used in the summer months when cooling demand is high. This is because there is no cooling demand in the winter and the heating demand consumes energy in the form of onsite combustion through natural gas. Figure 6 shows the actual monthly electricity used with actual temperatures for each month. Figure 7 compares the modeled data with the actual data. Relative to outside air temperature there is a close comparison; however, the modeled data peaks earlier than the actual data. This is because the weather also peaked earlier.

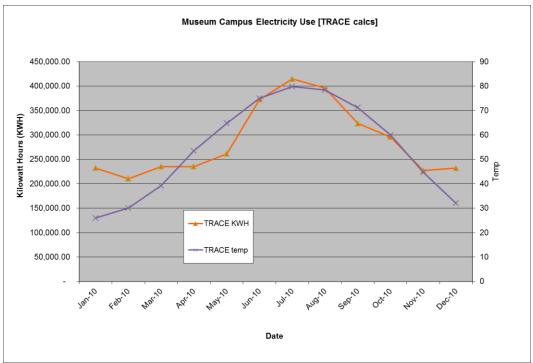
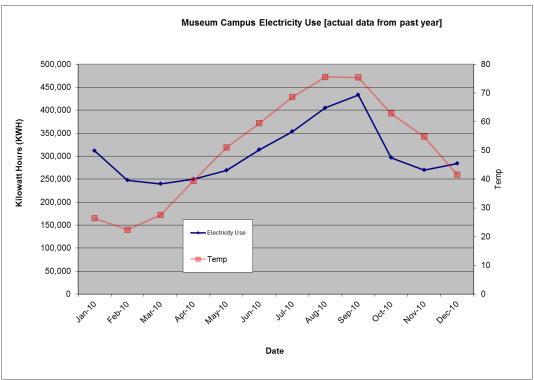



Figure 5 – Modeled Museum Electricity Usage

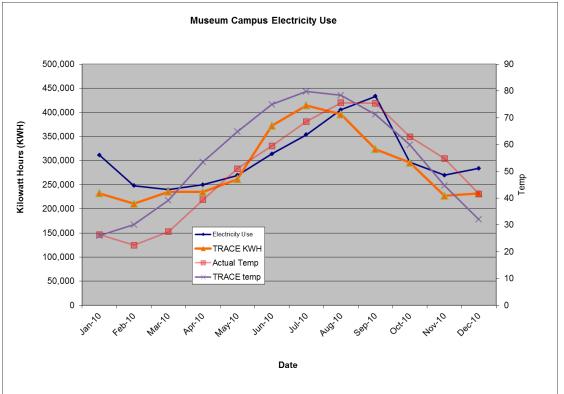
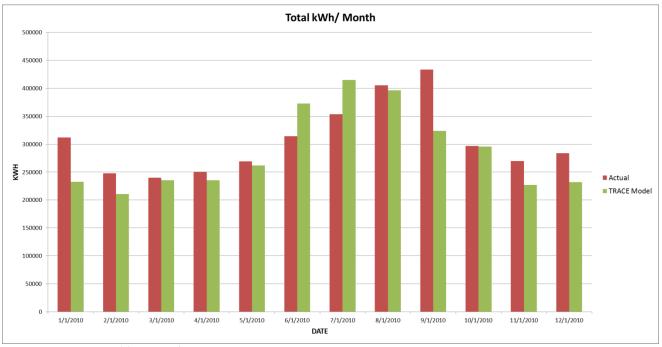
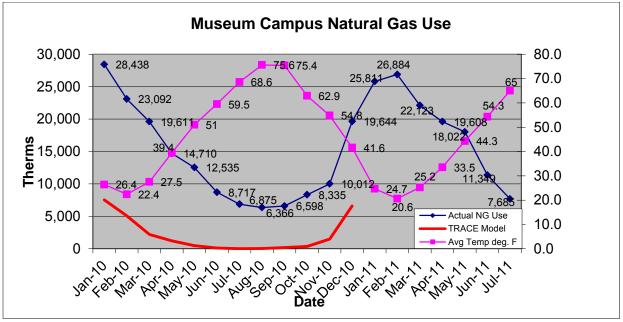



Figure 7 - Comparison of Model to Actual Energy Usage



The TRACE energy model only modeled natural gas used for heating. In actuality, natural gas is used in other areas in the building for example the appliances in the kitchen. This is the main reason why the model data in Table 12 is significantly lower than the actual data provided by Harley-Davidson.

Natural Gas									
Month	Actual Therms	Temp	Model Therms	% ∆					
1/11/2010	28438.00	26.40	7540.00	-					
2/8/2010	23092.00	22.40	5077.00	-					
3/9/2010	19611.00	27.50	2212.00	-					
4/9/2010	14710.00	39.40	1223.00	-					
5/10/2010	12535.00	51.00	489.00	-					
6/10/2010	8717.00	59.50	108.00	-					
7/8/2010	6875.00	68.60	9.00	-					
8/6/2010	6366.00	75.60	26.00	-					
9/8/2010	6598.00	75.40	191.00	-					
10/6/2010	8335.00	62.90	347.00	-					
11/5/2010	10012.00	54.80	1481.00	-					
12/8/2010	19644.00	41.60	6612.00	-					
Total:	164933.00		25315.00	85%					

Table 12 – Natural Gas Modeled Therms and Actual Therms

Figure 9 shows how the modeled natural gas follows the same projection, but is significantly lower than the actual data. Natural gas usage is at its lowest in the warmer months because there is a lower heating demand.

Cost Analysis:

A cost analysis was conducted to evaluate utility rates and building operation cost. Utility rate structure level three from WE Energies was used to evaluate the Harley-Davidson Museum. Data for rate structure level three is shown in Figure 10 and 11. An electric demand of \$10.00/kW was used in the Model. This rate structure seamed high and in Table 13 and Figure 12 it is clear that the rates were relatively high and is not the correct rate structure used by Harley-Davidson. After

further investigation of the information provided by Harley-Davidson it was concluded that the rate structure was simply \$0.09/kW. This more closely matched the actual cost and is shown in Figure 12. Another analysis was conducted using a standard built in rate structure from TRACE and was concluded to be similar to the \$0.09/kW rate structure.

An average price per therm, equaling \$0.80/therm, was calculated from the utility bill from Harley-Davidson and was used to calculate the cost of natural gas monthly and annually for heating, shown in Table 14. Because natural gas was not modeled in TRACE for total consumption this cost will be considerably lower than the actual cost of total gas consumption.

Time periods and prices

Off-Peak

8 p.m. to 8 a.m. weekdays All day on weekends and selected holidays **Cost:** 5 cents/kWh all year

Mid-Peak

8 a.m. to 2 p.m. weekdays 6 p.m. to 8 p.m. weekdays Cost: 19 cents/kWh Oct. 1 to May 31 25 cents/kWh June 1 to Sept. 30

On-Peak

2 p.m. to 6 p.m. weekdays Cost: 25 cents/kWh Oct. 1 to May 31 29 cents/kWh June 1 to Sept. 30

Figure 10 - WE Energy Level 3 Rates

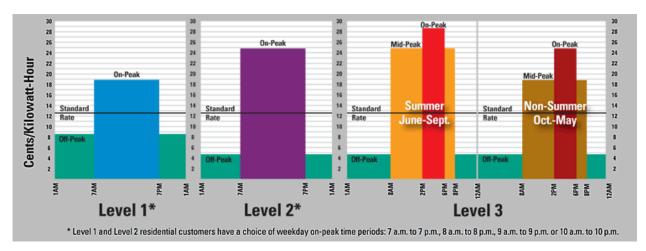
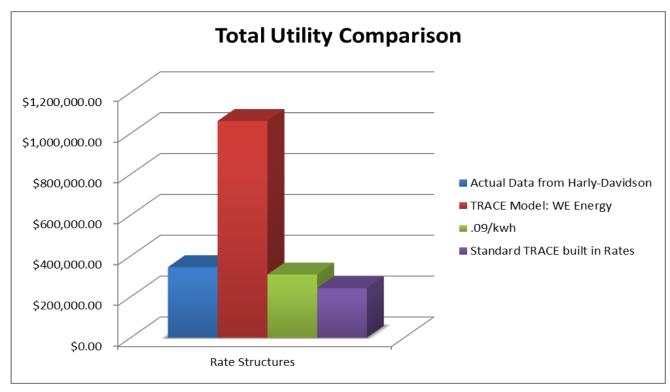



Figure 11 – WE Energy Rate Structures

Table 13 – Electricity Cost Comparison

	Monthly Utility Cost Comparison											
	Museum	Annex	Retail	Total	TRACE Model: WE Energy	TRACE kwh	.09/kwh	Standard TRACE built in Rates				
January	\$10,471.91	\$8,814.67	\$6,472.96	\$25,759.54	\$72,078.00	232,418.00	\$ 20,917.62	-				
February	\$9,139.90	\$7,631.74	\$5,369.61	\$22,141.25	\$65,763.00	210,507.00	\$ 18,945.63	-				
March	\$10,135.52	\$6,851.84	\$5,502.33	\$22,489.69	\$73,075.00	235,313.00	\$ 21,178.17	-				
April	\$13,077.00	\$5,894.36	\$5,747.06	\$24,718.42	\$74,113.00	235,240.00	\$ 21,171.60	-				
May	\$14,538.80	\$5,684.21	\$5,842.70	\$26,065.71	\$84,401.00	261,619.00	\$ 23,545.71	-				
June	\$18,488.35	\$5,429.63	\$6,077.33	\$29,995.31	\$119,612.00	372,389.00	\$ 33,515.01	-				
July	\$24,193.01	\$4,756.08	\$5,839.81	\$34,788.90	\$132,494.00	414,710.00	\$ 37,323.90	-				
August	\$26,438.25	\$4,586.95	\$6,238.63	\$37,263.83	\$126,447.00	395,992.00	\$ 35,639.28	-				
September	\$28,070.69	\$5,133.51	\$6,668.10	\$39,872.30	\$104,643.00	323,880.00	\$ 29,149.20	-				
October	\$18,543.28	\$4,773.60	\$5,994.65	\$29,311.53	\$84,199.00	295,749.00	\$ 26,617.41	-				
November	\$15,504.32	\$4,900.71	\$5,823.11	\$26,228.14	\$61,927.00	226,994.00	\$ 20,429.46	-				
December	\$13,594.81	\$6,769.54	\$6,626.98	\$26,991.33	\$62,696.00	231,986.00	\$ 20,878.74	-				
			Total:	\$345,625.95	\$1,061,448.00		\$309,311.73	\$ 242,463.00				

Technical Report 2	

Month	Model Therms	Price \$/ Therm		\$
1/11/2010	7540.00	0.80	\$	6,032.00
2/8/2010	5077.00	0.80	\$	4,061.60
3/9/2010	2212.00	0.80	\$	1,769.60
4/9/2010	1223.00	0.80	\$	978.40
5/10/2010	489.00	0.80	\$	391.20
6/10/2010	108.00	0.80	\$	86.40
7/8/2010	9.00	0.80	\$	7.20
8/6/2010	26.00	0.80	\$	20.80
9/8/2010	191.00	0.80	\$	152.80
10/6/2010	347.00	0.80	\$	277.60
11/5/2010	1481.00	0.80	\$	1,184.80
12/8/2010	6612.00	0.80	\$	5,289.60
Total:	25315.00	0.80	\$2	20,252.00

Table 14 – Natural Gas

The overall utility cost per area was calculated to be \$2.14 per square foot and is broken down in Table 15 and Figure 13. It is interesting to see how primary heating cost is only 6% of the total, but consumes 24% of the total energy, shown in Figure 1. This is largely due to the fact that primary heating is only 10% when converted to source energy.

Table 15 - Cost Breakdown

Cost Breakdown							
	Cost						
Primary Heating	\$	20,252.00					
Primary Cooling	\$	58,833.72					
Auxiliary	\$	111,124.17					
Lighting	\$	135,816.84					

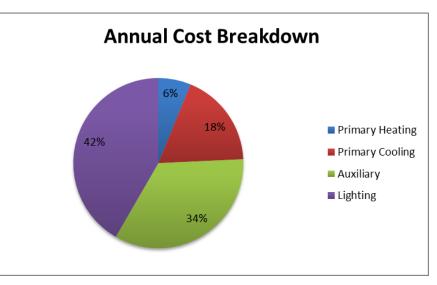
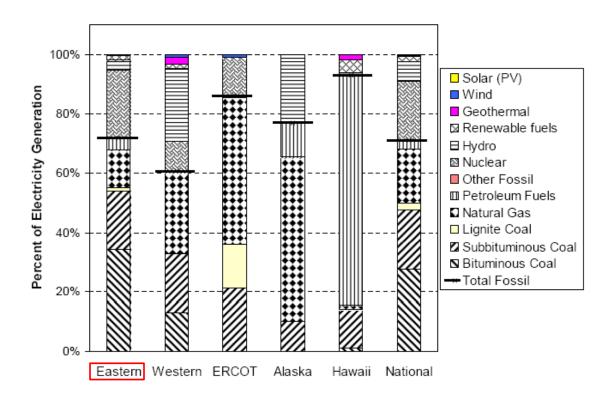


Figure 13 – Percentage Cost Breakdown



EMISSIONS

Emissions from the energy use within the Harley-Davidson Museum were calculated using emission factors from the Regional Grid Emissions Factors 2007 database and are listed in Tables 16 and 17. Actual natural gas data from Harley-Davidson was used along with the modeled natural gas values because the modeled natural gas was considerably lower than actually used by the building.

Total CO₂ equivalent is a quantity that defines the amount of CO₂ that would have the same global warming potential for a given mixture of pollutants. The CO₂ equivalent was calculated to be over 9 million pounds annually. Using information from the United States Environmental Protection Agency, this amount of CO₂ equivalent is equal to the annual greenhouse gas emissions from 797 passenger cars and it would take 867 acres of pine forest to sequester the CO₂ equivalent out of the atmosphere.

Figures 15 and 16 illustrate the amount of each pollutant produced by electricity production, on-site natural gas combustion, and precombustion activities, such as extracting and transportation of fuel. It is clear that the greatest pollutant produced is CO_2 and is mostly emitted through the process of generating electricity. This is because most of the energy demand in the building is serviced by electricity and most of the electricity is from subbituminous and bituminous coal burning power plants shown in Figure 14.

Table 16 - Emissions

	Harley-Davidson Museum Emission Table											
	Electric			On-Site Combustion- Modeled Natural Gas			On-Site Combustion- Actual Natural Gas			Total		
	Factor	Elec.	Mass of Pollutant	Factor	Gas	Gas	Mass of Pollutant	Gas	Gas	Mass of Pollutant	Model	**w/ Actual Gas Usage
Pollutant	lb / kWh	kWh	lb	lb / 1000 ft^3	therms	1000 ft^3	lb	therms	1000 ft^3	lb	lb	lb
CO2e	2.03E+00	3413592	6.93E+06	123	25315	2531.5	311374.5	164933	16493.3	2028675.90	7.24E+06	8.96E+06
CO2	1.92E+00	3413592	6.55E+06	122	25315	2531.5	308843	164933	16493.3	2012182.60	6.86E+06	8.57E+06
CH4	4.13E-03	3413592	1.41E+04	0.0025	25315	2531.5	6.32875	164933	16493.3	41.23	1.41E+04	1.41E+04
N2O	5.32E-05	3413592	1.82E+02	0.0025	25315	2531.5	6.32875	164933	16493.3	41.23	1.88E+02	2.23E+02
NOx	3.51E-03	3413592	1.20E+04	0.111	25315	2531.5	280.9965	164933	16493.3	1830.76	1.23E+04	1.38E+04
SOx	6.60E-03	3413592	2.25E+04	0.000632	25315	2531.5	1.599908	164933	16493.3	10.42	2.25E+04	2.25E+04
CO	7.13E-04	3413592	2.43E+03	0.0933	25315	2531.5	236.18895	164933	16493.3	1538.82	2.67E+03	3.97E+03
TNMOC	8.26E-05	3413592	2.82E+02	-	25315	2531.5	-	164933	16493.3	-	2.82E+02	2.82E+02
Lead	1.97E-07	3413592	6.72E-01	0.0000005	25315	2531.5	0.00126575	164933	16493.3	0.01	6.74E-01	6.81E-01
Mercury	4.01E-08	3413592	1.37E-01	2.60E-07	25315	2531.5	0.00065819	164933	16493.3	0.00	1.38E-01	1.41E-01
PM10	1.11E-04	3413592	3.79E+02	8.40E-03	25315	2531.5	21.2646	164933	16493.3	138.54	4.00E+02	5.17E+02
Solid Waste	3.03E-01	3413592	1.03E+06	-	25315	2531.5	-	164933	16493.3	-	1.03E+06	1.03E+06
VOC	-	-	-	6.13E-03	25315	2531.5	15.518095	164933	16493.3	101.10	1.55E+01	1.01E+02
		Model	**w/ Actual Gas Usage									
	*Total CO2e (lb):	7.24E+06	8.96E+06				Factor	rs taken fro	om the Reg	ional Grid Emission Fa	actors 2007	, Table B-10
* used to eva	luate global warmir	g potential										
** Actual Gas	s used because ga	s calculation	ns were lower than actual	data								

Table 17 - Precombustion

Precombustion Emission										
	Μ	al Gas		al Natural Gas	Electic + Gas					
	Factor	Gas	Mass of Pollutant	Gas Mass of Pollutant		Model	**w/ Actual Gas Usage			
Pollutant	lb / 1000 ft^3	1000 ft^3	lb	1000 ft^3	lb	lb	lb			
CO2e	2.78E+01	2.53E+03	7.04E+04	1.65E+04	4.59E+05	7.00E+06	7.39E+06			
CO2	1.16E+01	2.53E+03	2.94E+04	1.65E+04	1.91E+05	6.58E+06	6.75E+06			
CH4	7.04E-01	2.53E+03	1.78E+03	1.65E+04	1.16E+04	1.59E+04	2.57E+04			
N2O	2.35E-04	2.53E+03	5.95E-01	1.65E+04	3.88E+00	1.82E+02	1.85E+02			
NOx	1.64E-02	2.53E+03	4.15E+01	1.65E+04	2.70E+02	1.20E+04	1.23E+04			
SOx	1.22E+00	2.53E+03	3.09E+03	1.65E+04	2.01E+04	2.56E+04	4.27E+04			
CO	1.36E-02	2.53E+03	3.44E+01	1.65E+04	2.24E+02	2.47E+03	2.66E+03			
TNMOC	4.56E-05	2.53E+03	1.15E-01	1.65E+04	7.52E-01	2.82E+02	2.83E+02			
Lead	2.41E-07	2.53E+03	6.10E-04	1.65E+04	3.97E-03	6.73E-01	6.76E-01			
Mercury	5.51E-08	2.53E+03	1.39E-04	1.65E+04	9.09E-04	1.37E-01	1.38E-01			
PM10	8.17E-04	2.53E+03	2.07E+00	1.65E+04	1.35E+01	3.81E+02	3.92E+02			
Solid Waste	1.60E+00	2.53E+03	4.05E+03	1.65E+04	2.64E+04	1.04E+06	1.06E+06			
VOC	-	-	-	-	-	-	-			
	Facto	ors taken from	the regional Grid	Emission f	actors 2007, Table	6				

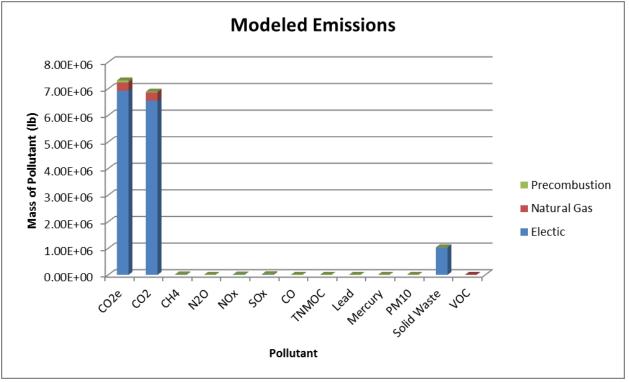
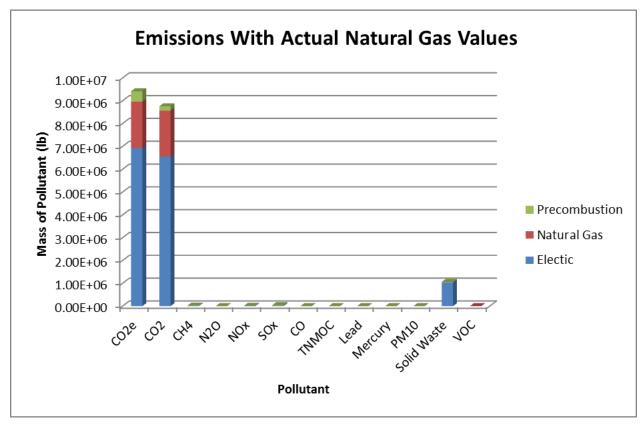



Figure 15- Modeled Emissions

References

ANSI/ASHRAE. (2007). Standard 62.1 – 2007, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.

ANSI/ASHRAE. (2007). Standard 90.1 – 2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.

Deru, M., & Torcellini, P. (2007). Source Energy and Emission Factors for Energy Use in Buildings. National Renewable Energy Laboratory, 5-28

HGA, Inc. Construction Documents. HGA, Milwaukee, WI.

Pocket Guide. Atlanta: ASHRAE, 2005

Project Team

- Owner: Harley-Davidson Motor Company, www.harley-davidson.com
- Construction Manager: M.A. Mortenson Company, www.mortenson.com
- Design Architect: Pentagram Architecture
- Architect of Record: Hammel, Green & Abrahamson, Inc.
- Structural and MEP Engineers: Hammel, Green & Abrahamson
- Environmental Services: The Sigma Group
- Landscape Architect: Oslund And Associates
- Civil Engineer: Graef Anhalt

APPENDIX A

Milwaukee, WI - Weather Design Conditions

Weather Library - General Informatio	n		
Region	Subregion	Location	
United States 🔹	North Central	Milwaukee, Wisconsin	<u>S</u> ave
Filename			<u>C</u> lose
Latitude 43 deg	Time zone 6	ASHRAE Climatic Data	
		Station WMO # 726400 Select Location	<u>N</u> ew
Longitude 87 deg Altitude 672 ft	Design month July OA pressure 29.16 in. Hg	Station Name Milwaukee	С <u>о</u> ру
	Wind	Winter Design 99.6 % 99 %	<u>D</u> elete
OADB OAWB	Ground velocity	Dry Bulb -5.2 0.1	Import
°F °F	Clearness reflect mph	Cooling Maximum DB / Mean Coincident WB	Impor
Summer 87 74	0.85 0.2 13.7	0.4% 1% 2%	
Winter -4	0.85 0.2 15	Dry Bulb 89.7 86.2 83.2	
- Saturation Curve Coefficients		Wet Bulb 74.6 72.4 70.7	
Coef A Coef B	Coef C Coef D	Dew Point 68.65 66.62 65.22	
-0.3218491 0.94684386	0.00033662672	Dehumid Maximum DB / Mean Coincident DB	
		0.4 % 1 % 2 %	
Comments		Dry Bulb 82.5 80.3 78.2	
Created by C.D.S. Marketing		Wet Bulb 76.22 74.4 72.58	
		Dew Point 74 72.1 70.3	
General Infor	mation	Hourly Observations	

APPENDIX B

Construction templates used in TACE.

Construction Types Library					
Library type Roof 🗨	Description	HDM White	Roof	•	<u>S</u> ave
	kness Conductivity n. <u>Btu/hr-ft-°F</u>	Density lb/cu.ft	Spec heat Btu/lb·°F	Resistance hr:ft ^{e,} *F/Btu	<u>C</u> lose
1 Outside Surface Resist. 💌 0	0	0	0	0.333	New
2 6 in. Insulation - High Dens 💌 6	0.025	5.7	0.2	0	Сору
3 3/4 in. Plywood Sheathing ▼ 0.75	0.0675	34	0.29	0	<u>D</u> elete
4 3/8 in. Felt & Membrane 💌 0.375	5 0.111	70	0.4	0	Calculate
5 2 in. HW Concrete 🗨 2	1	140	0.2	0	
6 Steel Siding 🗾 0.06	26	480	0.1	0	Advanced
7 Inside Surface Resist. 💌 🛛	0	0	0	0.685	
8 None 💌					
9 None					
10 None 💌					
Comment Steel sheet, 4" insulation					

Construction Types Library						
Library type Wall 💌		Description	2595 WAL	.1	•	<u>S</u> ave
Layer Material description 1 Outside Surface Resist. 💌	Thickness in.	Conductivity Btu/hr·ft·*F 0	Density Ib/cu.ft	Spec heat Btu/lb·°F 0	Resistance hr·ft ^{e.} *F/Btu 0.333	<u>C</u> lose <u>N</u> ew
2 4 in. Face Brick 💌	4	0.75	130	0.22	0	Сору
3 Air Space Resistance 💌	0	0	0	0	0.91	<u>D</u> elete
4 2 in. Insulation - High Dens 💌	2	0.025	5.7	0.2	0	Calculate
5 1/2 in. Gypsum Board-hori: 💌	0.5	0.093	50	0.26	0	Advanced
6 Air Space Resistance 💌	0	0	0	0	0.91	Auvanceu
7 1/2 in. Gypsum Board-hori: 💌	0.5	0.093	50	0.26	0	
8 Inside Surface Resist. 💌	0	0	0	0	0.685	
9 None 💌						
10 None 💌						
Comment 0						

Construction Types Library								
Library type Wall	Description	Description 2595 WALL 2			<u>S</u> ave			
Layer Material description	Thickness in.	Conductivity Btu/hr-ft-*F) Density Ib/cu ft	Spec heat Btu/lb·°F	Resistance hr·ft [.] *F/Btu	<u>C</u> lose		
1 Outside Surface Resist.	• 0	0	0	0	0.333	<u>N</u> ew		
2 4 in. Face Brick	• 4	0.75	130	0.22	0	С <u>о</u> ру		
3 Air Space Resistance	• 0	0	0	0	0.91	Delete		
4 2 in. Insulation - High Dens	· 2	0.025	5.7	0.2	0	Calculate		
5 8 in. LW CMU	• 8	0.267	79	0.21	0			
6 Inside Surface Resist.	• 0	0	0	0	0.685	<u>A</u> dvanced		
7 None	•							
8 None	•							
9 None	•							
10 None	•							
Construction Types Library								
Construction Types Library								
Construction Types Library Library type Wall]	Description	2595 WALL	_3	•	<u> </u>		
] Thickness in.	Description Conductivity Btu/hr/ft*F	2595 WALI Density Ib/cu ft	_3 Specheat Btu/lb·°F				
Library type Wall	Thickness in.	Conductivity	, Density	Spec heat	▼ Resistance	Save		
Library type Wall	Thickness in	Conductivity Btu/hr-ft-°F	Density Ib/cu ft	Spec heat Btu/lb·°F	Resistance	<u>S</u> ave <u>C</u> lose		
Library type Wall Layer Material description Dutside Surface Resist.	Thickness in.	Conductivity Btu/hr·ft·*F	Density Ib/cu ft	Spec heat Btu/lb-*F 0	Resistance hr·ft ^{2.} *F/Btu 0.333	<u>S</u> ave <u>C</u> lose <u>N</u> ew		
Library type Wall Layer Material description 1 Outside Surface Resist. 2 4 in. Face Brick	Thickness in. 0 4	Conductivity Btu/hr-ft °F 0 0.75	Density Ib/cu ft 0	Spec heat Btu/Ib·°F 0	Resistance hr:ft ^{e.} *F/Btu 0.333	<u>Save</u> <u>C</u> lose <u>N</u> ew C <u>o</u> py <u>D</u> elete		
Library type Wall Layer Material description 1 Outside Surface Resist. 2 4 in. Face Brick 3 Air Space Resistance	Thickness in. 4 0 2	Conductivity Btu/hr-ft °F 0 0.75 0	Density Ib/cu ft 0 130	Spec heat Btu/lb·°F 0 0.22 0	Resistance hr·ft ² ·*F/Btu 0.333 0 0.91	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete <u>Ca</u> lculate		
Library type Wall Layer Material description Dutside Surface Resist. 4 in. Face Brick Air Space Resistance 4 2 in. Insulation - High Dens	Thickness in. 4 0 2	Conductivity Btu/hr/ft °F 0 0.75 0 0.025	Density Ib/cu ft 0 130 0 5.7	Spec heat Btu/lb·°F 0 0.22 0 0.2	Resistance hr:ft ² .*F/Btu 0.333 0 0.91 0	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete		
Library type Wall Layer Material description Dutside Surface Resist. 4 in. Face Brick Air Space Resistance 4 2 in. Insulation - High Dens 5 1/2 in. Gypsum Board-hori:	Thickness in. 4 0 2 0.5 0	Conductivity Btu/hr/ft °F 0 0.75 0 0.025 0.093	Density Ib/cu ft 0 130 0 5.7 50	Spec heat Btu/lb*F 0 0.22 0 0.2 0.2	Resistance hr·ft ² .*F/Btu 0.333 0 0.91 0 0	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete <u>Ca</u> lculate		
Library type Wall Layer Material description Dutside Surface Resist. Layer Material description Dutside Surface Resist. Layer Material description Dutside Surface Resistance Library type Wall Layer Material description Dutside Surface Resistance Library type Wall Layer Material description Layer Material description Dutside Surface Resistance Layer Material description Layer Material description Layer Material description Dutside Surface Resistance Layer Material description	Thickness in. 4 0 2 0.5 0	Conductivity Btu/hr-ft*F 0 0.75 0 0.025 0.093 0	Density Ib/cu ft 0 130 0 5.7 50 0	Spec heat Btu/lb*F 0 0.22 0 0.2 0.2 0.26 0	Resistance hr-ft ^{2,} *F/Btu 0.333 0 0.91 0 0 0.91	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete <u>Ca</u> lculate		
Library type Wall Layer Material description Dutside Surface Resist. 4 in. Face Brick Air Space Resistance 5 1/2 in. Insulation - High Dens 6 Air Space Resistance 7 1/2 in. Gypsum Board-horit	Thickness in. 4 0 2 0.5 0 0.5	Conductivity Btu/hr-ft*F 0 0.75 0 0.025 0.093 0 0.093	Density Ib/cu ft 0 130 0 5.7 50 0 50	Spec heat Btu/lb·*F 0 0.22 0 0.2 0.2 0.26 0 0.26	Resistance hr·ft ^a ·°F/Btu 0.333 0 0.91 0 0.91 0 0.91	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete <u>Ca</u> lculate		
Library type Wall Layer Material description Dutside Surface Resist. 4 in. Face Brick Air Space Resistance 5 1/2 in. Insulation - High Dens 5 1/2 in. Gypsum Board-horit 6 Air Space Resistance 7 1/2 in. Gypsum Board-horit 8	Thickness in. 0 4 0 2 0.5 0 0 0.5 4 0	Conductivity Btu/hr-ft*F 0 0.75 0 0.025 0.093 0 0.093 0.093	Density Ib/cu ft 0 130 0 5.7 50 0 50 130	Spec heat Btu/lb·*F 0 0.22 0 0.2 0.2 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0 0.2 0 0 0 0	Resistance hr·ft ² ·*F/Btu 0.333 0 0.91 0 0.91 0 0.91 0 0.91	<u>Save</u> <u>C</u> lose <u>N</u> ew <u>Copy</u> <u>D</u> elete <u>Ca</u> lculate		

💷 Construction Types Library 💼 📼 💌									
Library type Wall 🗨		Description	2595 WAL	. 5,7,8	•	<u>S</u> ave			
Layer Material description 1 Outside Surface Resist.	Thickness in.	Conductivity Btu/hr·ft·*F 0	Density Ib/cu ft 0	Spec heat Btu/lb·°F 0	Resistance hr:ft ^{2, *} F/Btu 0.333	<u>C</u> lose <u>N</u> ew			
2 Steel Siding 💌	0.06	26	480	0.1	0	С <u>о</u> ру			
3 Air Space Resistance 💌	0	0	0	0	0.91	Delete			
4 2 in. Insulation - High Dens 💌	2	0.025	5.7	0.2	0	Calculate			
5 1/2 in. Gypsum Board-hori: 💌	0.5	0.093	50	0.26	0				
6 Air Space Resistance 💌	0	0	0	0	0.91	<u>A</u> dvanced			
7 1/2 in. Gypsum Board-hori: 💌	0.5	0.093	50	0.26	0				
8 Inside Surface Resist. 💌	0	0	0	0	0.685				
9 None 💌									
10 None 💌									
Comment 0									

APPENDIX C

Schedules used in TRACE model.

Scheduless of Utilization			Scheduless of Utilization									
		1	ĺ	Percentage							Percentage	
			Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight					Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight
	Annex Building	Cooling	100	100	100			Annex Building	Cooling	100	100	100
		Heating	0	0	0			Annex Building	Heating	0	0	0
		Weekday	10	100	10			ĕĕ	Weekday	0	100	0
		Weekend	10	50	10				Weekend	0	50	0
			Midnight -7:00 AM	7:00 AM - 7:00 PM				_		Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight
		Cooling	100	100	100			ing	Cooling	100	100	100
	alid	Heating	0	0	0			Museum building	Heating	0	0	0
	ž d	Weekday	10	100	10				Weekday	0	60	10
		Weekend	10	100	10				Weekend	0	100	0
	ŧ		Midnight -9:00 AM	9:00 AM - 7:00 PM	7:00 PM - Midnight		Ũ	Restaurant			8:00 AM - 11:00 AM	11:00 AM - Midnight
	na n	Cooling	100	100	100				Cooling	100	100	100
	stau	Heating	0	0	0				Heating	0	0	0
	Restaurant	Weekday	10	100	100				Weekday	10	60	90
		Weekend	10	100	100				Weekend	10	60	90
Light Schedule			Midnight -7:00 AM	7:00 AM - 9:00 PM	9:00 PM - Midnight		People Schedule			Midnight -7:00 AM	7:00 AM - 9:00 PM	9:00 PM - Midnight
hec		Cooling	100	100	100		-he		Cooling	100	100	100
Sc	Retail	Heating	0	0	0		٥ ٥	Retail	Heating	0	0	0
ht	LL.	Weekday	10	100	10		ble		Weekday	0	100	0
Lić		Weekend	10	100	10)eC		Weekend	0	100	0
			Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight		_			Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight
	8	Cooling	100	100	100			8	Cooling	100	100	100
	Shop	Heating	0	0	0			Shop	Heating	0	0	0
	0)	Weekday	10	100	10			0)	Weekday	10	100	10
		Weekend	0	25	0				Weekend	0	25	0
	÷		Midnight -7:00 AM	7:00 AM - 9:00 PM				÷		Midnight -7:00 AM	7:00 AM - 9:00 PM	9:00 PM - Midnight
	Event	Cooling	100	100	100			Sp Event	Cooling	100	100	100
	ú	Heating	0	0	0			ú	Heating	0	0	0
	Sp	Weekday	10	100	10			s	Weekday	10	100	10
		Weekend	10	100	10				Weekend	10	100	10
	Exhibit		Midnight -7:00 AM	7:00 AM - 7:00 PM				Temp Exhibit		Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight
	L L L	Cooling	100	100	100			L.	Cooling	100	100	100
	d d	Heating	0	0	0			ц Д	Heating	0	0	0
	Temp	Weekday	10	100	10			em	Weekday	10	60	10
		Weekend	10	100	100			_ ⊢	Weekend	10	100	10
	-		Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight							
	Annex Building	Cooling	100	100	100							
	Anr	Heating	0	0	0							
	4 8	Weekday Weekend	0	100 50	0							
		vveekenu	Midnight -7:00 AM	7:00 AM - 7:00 PM								
	Eon	Cooling	100	100	100							
	Wree Wildi Wee	Heating	0	0	0							
		Weekday	10	100	10		_					
		Weekend	0	0	0							
			Midnight -9:00 AM	9:00 AM - 7:00 PM	7:00 PM - Midnight							
	ran	Cooling	100	100	100							
	tau	Heating	0	0	0							
	ail Restaurant	Weekday	10	100	100							
		Weekend	10	100	100							
				7:00 AM - 9:00 PM								
		Cooling	100	100	100							
ale	Retail	Heating	0	0	0							
ledi		Weekday	10	100	10							
Misc Schedule		Weekend	10 Midnight 7:00 414	100	10 7:00 DM Midnight							
ů,		Cooling	Midnight -7:00 AM 100	7:00 AM - 7:00 PM								
Mis	Shop	Cooling	100	100	100				-			
	sh	Heating	10	0 100	0 10				-			
		Weekday	0	20	0							
		Weekend	0 Midnight -7:00 AM	20 7:00 AM - 9:00 PM								
	ent	Cooling	Cooling 100 100 100									
	Sp Ev	Heating	0	0	0				-			
		Weekday	10	100	10				-			
		Weekend	10	100	10							
	xhibit			7:00 AM - 7:00 PM								
		Cooling	100	100	100							
		Heating	0	0	0							
	dm	Weekday	10	100	10							
	Tem	Weekend	10	100	10							
			Midnight -7:00 AM	7:00 AM - 7:00 PM	7:00 PM - Midnight							
	ss	Cooling	100	100	100				1			
	Process	Heating	0	0	0							
	Ъд	Weekday	100	100	100							
		Weekend	100	100	100							